
The Canonical Forms of a Lattice RuleJ. N. LynessAbstract. Much of the elementary theory of lattice rules may be presentedas an elegant application of classical results. These include Kronecker grouprepresentation theorem and the Hermite and Smith normal forms of integermatrices. The theory of the canonical form is a case in point. In this paper,some of this theory is treated in a constructive rather than abstract manner.A step-by-step approach that parallels the group theory is described, leadingto an algorithm to obtain a canonical form of a rule of prime power order.The number of possible distinct canonical forms is derived, and this is used todetermine the number of integration lattices having speci�ed invariants.1. Notation Used to Describe and Classify Lattice RulesAn s-dimensional lattice, �, is a set of points having the property that, when p andq are members of �, so are p + q and p � q. It may be de�ned by this property,together with a restriction that there are no points of accumulation. A very familiarlattice is the unit lattice �0, which comprises all points p = (p1; p2; : : : ; ps), all ofwhose components pi are integers. An integration lattice is a lattice that contains theunit lattice �0 as a sublattice. A lattice rule Q(�) is a quadrature rule for [0; 1)s thatemploys the points of �\ [0; 1)s as an abscissa set A(Q) and assigns an equal weightto each. Some lattice rules are useful for integrating naturally periodic functions.Other lattice rules may be very ine�cient. A representative selection of the literatureon lattice rules may be found in Sloan (1992) and Niederreiter (1992).The investigation of lattice rules is hampered by two features: �rst, the large numbersof di�erent rules that are available, and second, a bewildering lack of uniqueness inthe various convenient representations for investigating rules and for classifying them.A classical approach to lattices is based on the generator matrix. It is readily shownthat, given any s-dimensional lattice �, there exists a set of s generators a1;a2; : : : ;assuch that all points p = sXi=1 �iai �i integerlie in the lattice, and all lattice points are of this form. The s�s matrix A whose j-throw is aj (j = 1; 2; : : : ; s) is referred to as a generator matrix of the lattice. When1



� is an integration lattice, it is readily shown that all elements of A are rational andthat N = jdet Aj�1 is the order of A(Q), the abscissa set of Q(�). An approachbased particularly on the generator matrix (A�1)T of the reciprocal lattice �? hasproved fruitful. However, inconvenient aspects of this approach include the absenceof uniqueness of A and the di�culty of proceeding from the matrix A to a sum offunction values.The standard number theoretic rules of Korobov (1959) are also lattice rules. Theseare conventionally expressed in the formQf = 1n nXj=1 f �znj� : (1:1)Here z 2 �0, and f(x) is a periodic continuation of f(x) that coincides with f(x) in[0; 1)s. As is conventional, we denote x modulo �0 by fxg. The components of fxgare the respective nonnegative fractional parts of the components of x.Only some lattice rules (those of rank 1) can be expressed in this form. On the otherhand, all lattice rules may be expressed in a natural generalization of form (1.1) thatwe refer to as a t-cycle D � Z rule form. This isQf = 1d1d2 : : : dt d1Xj1=1 d2Xj2=1 � � � dtXjt=1 f  tXi=1 zidi ji! ; (1:2)where di are integers and zi 2 �0. Associated with this form are two integer matrices.D = diagfd1; d2; : : : ; dtg is a t � t diagonal matrix, and Z is the t � s matrix whosej-th row is zj.It is not di�cult to show that this form represents a lattice rule. In fact, it is the ruleof lowest order N that includesci = fzi=dig i = 1; 2; : : : ; t:The lattice � is generated by these ci together with the unit vectors ek, k = 1; 2; : : : ; s.Note that the m-panel product trapezoidal rule is a lattice rule. One of its s-cycleD � Z forms has D = mI and Z = I.Form (1.2) is not unique. Moreover, it may be repetitive. That is, for some integer k,it may include only d1d2 : : : dt=k distinct abscissas, each repeated k times.De�nition 1.3 The component z=n, where z = (�1; �2; : : : ; �s) 2 �0 is termed properwhen gcd(�1; �2; : : : ; �s; n) = 1 and c = z=n 2 [0; 1)s. (Colloquially, z=n is in itslowest terms and the point is in the integration region.)If z=n in (1.1) is not proper, then the form is repetitive. This sort of trivial repetitionis easy to recognize. However, possible repetition in the general t-cycle D � Z formneed not be at all obvious. 2



It is straightforward to show (see Sloan and Lyness 1989) that a necessary and suf-�cient condition for the rule form Qf in (1.2) to be repetitive is that there existintegers j1; j2; : : : ; jt with ji 2 [0; di), not all zero, such thattXi=1 jizidi 2 �0: (1:4)One classi�cation of lattice rules based on the t-cycle form relies on the circumstancethat the elements of the abscissa set A(Q) form a group G under addition modulo�0.In Sloan and Lyness (1989), the Kronecker group representation theorem was appliedto this group to show that a t-cycle nonrepetitive D � Z form exists in which allelements di exceed 1, and di+1 j di, and the zi are linearly independent. Such arule form was termed a canonical form. From the nomenclature of group theory,these particular values of di are termed invariants, and this particular value of t istermed the rank of the rule Q. The rank and invariants are unique to the lattice, butthe choice of zi in the canonical form is far from unique. However, no constructiveapproach for proceeding from a general t-cycle form to a canonical form was madeavailable at that time.This paper is concerned with �nding a canonical form of a rule de�ned by a generalt-cycle D � Z form. We shall, in fact, show only how to �nd nonrepetitive formsin which di+1 j di. We may then rely on Corollary 4.6 of Sloan and Lyness (1989)which assures us that a form that appears to be canonical is indeed canonical if it isnonrepetitive. (See Theorem 3.1 below.)2. Decomposition and ReassemblyThe accompanying table illustrates the underlying group theory.G F1 F2 FsS1 E11 E12 : : : E1sS2 E21 E22 : : : E2s...Sq Eq1 Eq2 : : : EqsEach entry is an Abelian group. Any group in the initial row (column) is the directsum of the other groups in that row (column), and the groups in all but the initialcolumn are cyclic groups. The table illustrates the decomposition of an Abeliangroup G of order N = p�11 p�22 : : : p�qq into the direct sum of cyclic groups Fk. Here3



p1; p2; : : : ; pq are distinct primes, and �i are positive integers. The �rst stage is thedecomposition of G into the direct sumG = S1 � S2 � : : :� Sq (2:1)of its Sylow p groups. Sj, which is of order p�jj , contains all elements of G whoseorder is any integer power of pj . Any noncyclic Abelian group of prime power ordermay be decomposed into a direct sum of cyclic groups. Thus,Sj = Ej;1 � Ej;2 � : : :� Ej;s; (2:2)where Ej;k is a cyclic group of order p�j;kj . These have been arranged in order so that�j;k � �j;k+1. Clearly, Psk=1 �j;k = �j. There may be fewer nontrivial groups thanindicated here. The theory is not compromised if some trivial groups Ej;k, whichcontain only the identity element, are included but ignored. For these, �j;k = 0.Finally, we apply the result that the direct sum of cyclic groups whose orders aremutually prime is also a cyclic group. Thus,Fk = E1;k � E2;k � : : :� Eq;k (2:3)is a cyclic group of order nk = Qqj=1 p�jkj . Note that, since �j;k � �j;k+1, it follows thatnk+1 j nk.What is illustrated here is the Kronecker decomposition of an Abelian group G intothe direct sum of s cyclic groups Fk; k = 1; 2; : : : ; s. The nontrivial values of nk aretermed the invariants of G, and the number of these is termed the rank of G.The above remarks comprise at most a schematic for a possible derivation of a famoustheorem in group theory. For our purposes, as we shall see, we do not need grouptheory. We may use the schematic to derive a canonical form.It appears that in our application, the decomposition (2.1) into Sylow p groups isvery simple, as is the recomposition (2.3) of the cyclic groups Ej;k into Fk. However,the middle stage (2.2) is nontrivial. The following examples illustrate the �rst andthird operations. These are justi�ed in the following theorem.Theorem 2.4 Let n = pq, (p; q) = 1, and z; z1; z2 2 �0. ThennXj=1 f �jzn + �� = pXj1=1 qXj2=1 f  j1zp + j2zq + �!and pXj1=1 qXj2=1 f  j1z1p + j2z2q + �! = nXj=1 f  jz3pq + �! ;where z3 = qz1 + pz2. Moreover, if z1=p and z2=q are proper (see De�nition (1.3)above), so is fz3=pqg. 4



The proof of either part is trivial. Note that there are no minor restrictions. Forexample, z2=q need not be in its lowest terms. The � is notationally helpful in estab-lishing extensions of these results.As an example, we put the following rule into canonical form.Example 2.5 Qf = 112:15 12Xj1=1 15Xj2=1 f  (5; 8; 3)12 j1 + (8; 1; 0)15 j2! : (2:5)This may be reexpressed as 14:3:3:5 4Xj1=1 3Xj2=1 3Xj3=1 5Xj4=1 f(x);where x = (5; 8; 3)4 j1 + (5; 8; 3)3 j2 + (8; 1; 0)3 j3 + (8; 1; 0)5 j4:This may be replaced byx0 = (1; 0; 3)4 j1 + (2; 2; 0)3 j2 + (2; 1; 0)3 j3 + (3; 1; 0)5 j4:The sum in (2.5), which contains 180 elements of G, has now been reexpressed as thedirect sum of three Sylow p groups, with p = 2, 3, and 5, respectively. Those withp = 2 and 5 are already cyclic groups. The Sylow 3 group is the direct sum of twocyclic groups.The intermediate stage comprises, in general, removing repetition from each of theSylow p groups. In this case, it is clear by inspection that the groups of order 3 aredistinct. That is, the sums over j2 and j3 include nine distinct terms and not three.Applying the second part of Theorem 2.4 twice, we �nd successivelyQf = 1180 12Xj12=1 3Xj3=1 5Xj4=1 f(x00)= 1180 60Xj124=1 3Xj3=1 f (x000)= 1180 60Xk1=1 3Xk2=1 f  (31; 52; 45)60 k1 + (2; 1; 0)3 k2! : (2.6)Here x00 = (11; 8; 9)12 j12 + (2; 1; 0)3 j3 + (3; 1; 0)5 j4;and x000 = (91; 52; 45)60 j124 + (2; 1; 0)3 j3:5



This rule form (2.6) is in canonical form.The reader may have noticed that the overall result can be signi�cantly altered bywhat appears at �rst sight to be a minor change in the problem. For example, if inExample 2.5 we replace the second vector (8,1,0) by (7,1,0), we �nd that the vector(2,1,0) in x0 must be replaced by (1,1,0). The middle stage becomes3Xj2=1 3Xj3=1 f  (2; 2; 0)3 j2 + (1; 1; 0)3 j3 + �! = 3 3Xj23=1 f  (1; 1; 0)3 j23 + �! :The new form Qf is repetitive, and Q has one invariant instead of two.A satisfactory procedure to obtain the canonical form cannot rely on the chancerecognition of this sort of circumstance. Subsequent sections are devoted to providingan algorithm for handling this problem.3. Rules of Prime Power OrderAs a preliminary, we remove some trivial complications. We are interested only insequential proper forms. Qf is sequential if d1 � d2 � : : : � dt > 1. The i-thcomponent is proper if zi=di is in its lowest terms and ci = zi=di 2 [0; 1)s. The formis sequential proper when it is sequential and each element is proper. It is a trivialtask to reexpress Qf in a t0 cycle D � Z, sequential proper form.A geometric view is that the rule may be de�ned by t points c1; c2; : : : ; ct of ordersd1; d2; : : : ; dt, respectively. A sequential proper form may be immediately constructedby reordering the points so that d1 � d2 : : : � dt > 1, and setting zi = difcig.It still may be repetitive (trivially if ci = ci+1 and di = di+1).Theorem 4.5 and its corollary 4.6 in Sloan and Lyness 1989 assure us that a nonrepetitive sequential proper rule form in which di+1 j di is a canonical form. Thisis di�cult to exploit as it is di�cult in general to recognize a non repetitive form.However, the theory becomes much easier as soon as we restrict ourselves to primepower forms. In this section we deal with lattices and rule forms of prime powerorder; these are t cycle D � Z rule forms in whichdj = p�j j = 1; 2; : : : ; t; (3:1)where p is a prime. For these, the divisibility condition is naturally satis�ed and itfollows:Theorem 3.1 A prime power sequential proper form is canonical if and only if it isnon repetitive.In other words, a prevalent situation in which a rule form is both non repetitive andnot canonical does not arise in the prime power order context.6



In this section and in sections 4 and 5, we deal with lattices and rule forms of primepower order only. The problem of �nding a canonical form reduces to that of recog-nizing and removing repetition.Theorem 3.2 Let Qf and Q0f be prime power t-cycle D � Z forms having thesame prime p, and the same Z matrix. Let D = diag(d1; d2; : : : ; dt) and D0 =diag(p; p; : : : ; p) = pI. Then Qf and Q0f are either both repetitive or both non-repetitive.Proof. The condition for Qf to be repetitive is that there exist integers ji 2 [0; di)i = 1; 2; : : : ; t not all zero such that tXi=1 jizi=di 2 �0: (3:3)Let us suppose that Qf is repetitive and the above ji exist. Let I 0 be fi j ji 6= 0g.Let ji=di = 
i=mi in their lowest terms. Then 
i 6= 0, i 2 I 0, andXi2I 0 
izi=mi 2 �0: (3:4)Let p� = maxi2I 0 mi. Let I 00 be fi j mi = p�g. Then multiplying (3.4) by p��1 andsubsuming all integers to the right, we obtainXi2I 00 
izi=p 2 �0: (3:5)This statement implies that Q0f is repetitive.The converse is marginally simpler to prove. If we setji = 
idi=p i 2 I 00ji = 0 i 2= I 00;we recover (3.3) from (3.5). 2Recasting this theorem geometrically is revealing.Corollary 3.6 Any nonrepetitive prime power t-cycle rule form includes preciselypt � 1 distinct points of order p.Theorem 3.2 shows that the critical quantities in determining whether a prime powerform is repetitive is the Z matrix. The integers di play a secondary role. This iscon�rmed in the following theorem.Theorem 3.7 A t-cycle D � Z form of a prime power rule is repetitive if and onlyif the rank of Z modulo p is less than t. 7



Proof: In view of Theorem 3.2, we need only establish this for a t-cycle D0�Z formwhere D0 = diagfp; p; : : : ; pg:If this is repetitive, there exist j1; j2; : : : ; jt, not all zero such that( tXi=1 jizi=p) = 0:This implies that Pti=1 jizi = pu for some u 2 �0; this is the condition that the rankof Z modulo p is less than t. 2The simple results of this section may be readily incorporated into an algorithm thattransforms a general p-power t-cycle D � Z rule form into a sequential, proper, andnon-repetitive form. In the �nal form, Z either is unimodular or contains a t � tunimodular submatrix.This algorithm is a variant of a standard triangularization technique.At the start of the j-th stage, we haved1 � d2 � : : : � dj � : : : � dt > 1all being powers of p, and zi=di i = 1 : : : j � 1 are all proper. Associated withz1; z2; : : : ; zj�1 we have distinct integers i1; i2; : : : ; ij�1, which we term column indices.Moreover, Zr;ic = 1 when r = cZr;ic = 0 when r > c ) c = 1; 2; : : : ; j � 1r = 1; 2; : : : ; t :The j-th stage comprises the following:1. Let zj = (�1; �2; : : : ; �s). Identify a component, say �`, for which (�`; p) = 1.Set ij = `. Replace zj by kzj, where k = ��1` (mod dj) and then replace zj byz0j = (� 01; � 02; : : : ; � 0s) with � 0i 2 [0; dj). (This leaves � 0̀ = 1.)2. For i > j, replace zi by zi � Zi;`zj. (This leaves Zi;` = 0; i > j.)3. Carry out trivial adjustments on Z and D necessary to leave a t0-cycle D � Zsequential proper form.Comments:1. We have by hypothesis that zj=dj is proper. Thus, there is some component of zj,say the `-th, that is not a multiple of p, and ` may be chosen for ij in 1.3. These adjustments include the following:a. Put any improper zi=di into proper form z0i=d0i.8



b. Remove any rows zi for which either zi = 0 or di = 1; naturally this step reducesthe value of t.c. If necessary, reorder the rows of Z so that the ordering of di is sequential.The �nal Z matrix is an integer matrix. If its columns were permuted in accordancewith the column indices, it would be upper triangular with unit diagonal. Thus, itcontains a t� t unimodular submatrix (corresponding to retaining only the columnsnumbered i1; i2; : : : ; it).Because of this unimodularity, it follows that when t = s, the matrix A = D�1Z is agenerator matrix of �. In general, t < s, and ~A = D�1Z comprises the �rst t rows ofa generator matrix. The remaining s� t rows of the generator matrix may be chosenas unit vectors e�, the � being the elements of [1; s] not assigned to be column indices.Finally, note that Z is not unique. In general, the column indices can be chosen inmany ways, and rows having the same d element may be interchanged.4. Canonical Form Redundancy of Prime Power FormsIn the preceding section, we remarked that the Z matrix is not unique. In thissection, we quantify this lack of uniqueness. We take an r-cycle prime power ruleform Qf which is in canonical form; we see how many distinct reassignments of Zexist. Initially, we shall have to assume that the result depends on p, D, and Z.However, it will appear that it simply depends on p and D. LetQf = 1n1n2 : : : nr n1Xj1=1 n2Xj2=1 : : : nrXjr=1 f  rXk=1 jkzknk ! (4:1)be a canonical form of Q. Here as before,n1 � n2 � : : : � nr > 1;and each ni is a power of p. Also, zk 2 [0; nk)s, k = 1; 2; : : : ; r. Note that, since thisis a canonical form, we know that zk=nk is in its lowest terms. Each member of theset of generators ck = zk=nk (4:2)is itself an element of [0; 1)s.De�nition 4.3 ���s(n1; n2; : : : ; ns;N ;Z) is the number of distinct ways of assigningthe Z-matrix so that the rule is the same. (Here zk 2 [0; nk)s.)Geometrically, this is the number of di�erent point sets c1; c2; : : : ; cr that can be putinto (4.1) leaving the same rule. These points are 2 [0; 1)s.9



It will appear that ���s is independent of Z, and we shall later drop the Z in thede�nition.The construction of a formula for ���s uses relatively straightforward concepts thatnevertheless must be applied with care. We shall suppose that we assign the vectorszj (or cj = zj=nj) in turn, starting with j = 1 and ending with j = r. Clearly, everycj has to be a member of the abscissa set. Thus, when we start the j-th stage, wemay limit the choice for c0j as follows:c0j = rXi=1 �jici �ji 2 [0; ni) (4:4)or z0j = rXi=1 �ji njni zi: (4:5)It is convenient to drop the f g symbol here. The restriction �ji 2 [0; ni) in (4.4)simply prevents duplication, since �jici � (�ji + ni)ci. When assigning c0j, it is clearthat for those values of i for which ni < nj, we may choose any available �ji , andhence there are ni distinct choices for each such �ji . However, for those values of ifor which ni > nj, the choice has to be restricted so that z0j in (4.5) turns out to bein �0. That is, �ji (nj=ni) must be an integer. Thus, for these values of i, there areonly nj distinct choices for each �ji . (Geometrically, this recognizes that cj is of ordernj and therefore only multiples of ci of this order or less may be included.) Thereremain values of i for which ni = nj.To �x ideas, suppose nj+1 > nj > nj�1. Then there is only one value �jj remaining toassign. Since zj itself must be attainable, we can allow �jj to take one of nj(1� p�1)distinct values only.In this case, then, the number of ways of assigning z0j is the product over i of thenumber of ways of assigning �ij . This givesj�1Yi=1 nj � nj  1� 1p!� rYi=j+1 ni:Thus, when nj�1 > nj > nj+1, whatever the individual values of zi, i = 1; 2; : : : ; r,the number of ways of reassigning zj, without changing any other zi isnjj rYi=j+1 ni  1� 1p�(j)! with �(j) = 1:In general, we cannot expect all nj to be distinct. Let us supposenj > nj+1 = nj+2 = : : : = nj+w > nj+w+1 (4:6)and isolate the part of the calculation involving the assignment of c0j+1 : : : c0j+w tothe extent that this is a�ected by cj+1 : : :cj+w. For convenience, we suppress the10



subscript j and denote by n the common value nj+1. We need to consider the numberof possibilities for c01 = wXi=1 �1i cic02 = wXi=1 �2i ci (4.7): : :c0w = wXi=1 �wi ci:These are assigned in the following order. First, �1i , i = 1; 2; : : : ; w are assigned. Weneed c01 to be of order n. To ensure this, �1i may be chosen in any way so long as atleast one term �1i ci is of order n. This is equivalent to choosing a point of order n in aw-dimensional space. The number of points is nw(1� p�w). Later in the calculation,we have to assign c02. However, c1 has already been assigned and is of order n. Toensure that nc2 is independent of nc1, one must ensure that at least one of �2i ci,i = 2; 3; : : : ; w is of order n. �21 is not restricted. The number of points available isnw(1 � p�w+1).Continuing in this way, we �nd the number of ways of assigning c0k, k = 1; 2; : : : ; wto be nw(1 � p�w�1+k):We note again that the result does not depend in detail on the rule form. It dependsonly on p and on n1; n2; : : : ; nr. When several nj are equal, it depends particularlyon the pattern. It is notationally convenient to de�ne an integer index.De�nition 4.8 With respect ton1 � n2 � n3 � : : : � nr; the index�(j) = k � j; (4.8)where k is the smallest integer for which nk < nj.Theorem 4.9 Given a rule form Qf , the number of nontrivial ways of reassigningcj so that the rule remains unaltered isrYi=1 nmax(i;j) 1 � 1p�(j)! : (4:9)This number, large as it is, refers only to the number of ways of reassigning cj. Sinceit is independent of the individual choice for the other generators ci (i 6= j), we obtainthe total number of nontrivial assignments as the product of r corresponding terms.Thus, we have the following corollary. 11



Corollary 4.10 ���s(n1; n2; : : : ; ns;N) = rYj=1 njj rYi=j+1 ni(1� p��(j)) (4.10)= N rYt=1n2t�2t (1 � p��(t)):5. The Number of Distinct Prime Power Rules Having Speci�ed InvariantsIn the preceding section we derived a formula for ���s(n1; n2; : : : ; ns;N). This is thenumber of distinct assignments for c1; c2; : : : ; cr that give rise to the same rule Q.The formula is the same for any rule having these invariants. We may exploit thisfact to derive a formula for the number of distinct rules �s(n1; n2; : : : ; ns;N) havingthese invariants.De�nition 5.1 ��s(n1; n2; : : : ; ns;N) is the number of distinct ways of assigning theZ matrix so that the rule has these invariants. (Here zk 2 [0; nk)s.)Geometrically, this is the number of di�erent point sets c1; c2; : : : ; cr that can besubstituted into (4.1) to give a nonrepetitive rule form.Comparing De�nition 5.1 with De�nition 4.3 shows that ��s is larger than ���s. Sincethe redundancy is the same for each distinct rule, it follows that�s(n1; n2; : : : ; ns;N) = ��s(n1; n2; : : : ; ns;N)���s(n1; n2; : : : ; ns;N) : (5:2)The determination of ��s is an exercise of the same type as the determination of ���sbut much easier in detail. (The formula does not bring in the pattern of ni explicitly.)The rule may be de�ned by an assignment of r points c1; c2; : : : ; cr. (ci = zi=ni is apoint of order ni.) ��s is the number of distinct point assignments. This is calculatedas Qrj=1 Pj , where Pj is the number of ways of choosing cj once c1, c2, and cj�1 havealready been assigned.The number of points of order nj is nsj(1 � p�s). (This is because when n = p�,the grid containing ns points contains all points of orders 1; p; : : : ; p�. The numberof order precisely p� is (p�)s � (p��1)s.) However, if c1; c2; : : : ; cj�1 have alreadybeen assigned, in view of Theorem 3.2, cj must be chosen so that the order p points itintroduces have not been included previously. There are in total ps�1 order p points.The number of these in the span of c1; c2; : : : ; cj�1 is pj�1 � 1. Thus, a proportion(pj�1 � 1)=(ps � 1) of the order p points is not available; alternatively stated, aproportion (ps � pj�1)=(ps � 1) = (1 � p�s+j�1)=(1 � p�s) is available. It followsrelatively painlessly that of the nsj(1 � p�s) points of order nj, only that proportion12



give rise to available order p points. Thus, cj may be chosen in nsj(1 � pj�1�s) ways.Hence, ��s = rYj=1Pj = rYj=1nsj(1� pj�1�s)= N s rYj=1(1 � pj�1�s): (5.3)The �nal stage gives the following theorem.Theorem 5.4�s(n1; n2; : : : ; ns;N) = bs=2cYj=1  njns+1�j !s�2j+1 rYj=1 (1� 1=ps+1�j )(1� 1=p�(j)) : (5:4)Here n1 � n2 � : : : � nr > 1, and we have set nj = 1 for all j 2 [r+1; s]. The index�(j) is de�ned in (4.8).With a single exception, �s > 1. The exception is the s-dimensionalm copy rule. Hereall the invariants are equal, and the set �(j) comprises the �rst s positive integers.The �rst three cases are�s(n1; 1s�1;N) = N s�1(1 � 1=ps)=(1 � 1=p) (5:5)�s(n1; n2; 1s�2;N) = (N s�1=n22)(1 � 1=ps)(1 � 1=ps�1)=(1 � 1=pj1 )(1� 1=p); (5:6)where j1 = 1 when n1 > n2 > 1= 2 when n1 = n2 > 1;�s(n1; n2; n3; 1s�3;N) = N s�1n22n43 (1� 1=ps)(1� 1=ps�1)(1� 1=ps�2)(1� 1=pk1 )(1� 1=pk2 )(1� 1=p) ; (5:7)where k1 = k2 = 1 when n1 > n2 > n3 > 1k1 = 3; k2 = 2 when n1 = n2 = n3 > 1k1 = 2; k2 = 1 otherwise:These are valid only when n1 � n2 � : : : � nr > 1 and each ni is a power of the sameprime p.These results have been obtained independently by Joe and Hunt (1992). Their gen-eral approach follows much the same lines as the one here. However, their derivationof ���s is embedded in group theory.These results resemble a similar result (Lyness and So=revik 1989) for �s(N), thenumber of distinct lattice rules of order N . When N = p�, this is�s(N) = N s�1 s�1Yi=1 " 1� 1pi+� !, 1� 1pi!# : (5:8)13



6. A General Formula for �s(n;N)A simple application of the group decomposition described in Section 2 allows us tobase a general formula for �s(n;N) on the one valid only for prime power rules inTheorem 5.4. The decomposition (2.1) of G into the direct sum of Sylow p groupshas the property that when G has invariants n(G), the invariants n(Sp) of each Sylowp group is known. The uniqueness of this decomposition leads to the result that thenumber of distinct abscissa sets for which G has invariants n(G) is the product of theseveral corresponding numbers for each component Sp.Theorem 6.1 Let the prime decomposition of N beN = p�11 p�22 : : : p�qq :Let the invariants nk of a rule Q of order N be given bynk = p�1k1 p�2k2 : : : p�qkq k = 1; 2; : : : ; s:Then the number of distinct rules Q having these invariants is�s(n1; n2; : : : ; ns; N) = qYj=1 �s(p�j1j ; p�j2j ; : : : ; p�jsj ; p�jj );where an explicit expression for each of the factors on the right appears in (5.4) above.In the statement of the above theorem, we have followed various conventions fromearlier sections. In particular, �j;i � �j;i+1:This theorem is a natural extension of a result in Lyness and So=revik (1989) to thee�ect that the number of distinct lattice rules of order N is given by�s(N) = qYj=1 �s(p�jj ):7. Concluding RemarksThe general thrust of this article is to provide a straightforward and concrete approachto some of the basic structure of lattice rules. This approach has led through severalareas which are new only in a marginal sense.For example, spelling out the group theory and applying it as in Section 2 is new.Something like it was submitted in an earlier version of Sloan and Lyness (1989) butwas excised by the referee. Again, the simple procedure in Section 3 for the reductionof a prime power rule to canonical form has not appeared before. What will soon beavailable is a more general process in which the Smith Normal Form of a generator14



matrix is used to obtain a general canonical form; see Lyness and Keast (1991) andLangtry (1991). However, in that process the simple underlying geometry is obscured.The results of Sections 4 to 6 about the number of lattice rules with given invariantswere available to the author in 1989 and promised in 1991. These were subsequentlyderived independently by Joe and Hunt (1992). In broad outline, their derivationparallels the one given here. However, in their work, ���s appears as the result of anontrivial argument based on group theory, whereas here it is derived in a direct wayas a straightforward redundancy factor in a matrix representation.This author hopes that this somewhat pedestrian exposition of these ideas will helpenlighten an elegant branch of numerical quadrature.AcknowledgmentThis work was supported in part by the Applied Mathematical Sciences subprogramof the O�ce of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.ReferencesJoe S. and Hunt D. C. (1992), \The Number of Lattice Rules Having Given Invari-ants," Bull. Australian Math. Soc. 46, pp. 479{495. See also Applied MathematicsPreprint AM91/44, UNSW.Korobov N. M. (1959), \The Approximate Computation of Multiple Integrals" (Rus-sian), Dokl. Akad. Nauk. SSSR 124, pp. 1207{1210.Lyness J. N. and Keast P. (1991), \Application of the Smith Normal Form to theStructure of Lattice Rules," Preprint MCS-P269-0891, Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, Ill.Lyness J. N. and So=revik T. (1989), \The Number of Lattice Rules," BIT 29, pp.527{534.Langtry T. N. (1991), \The Determination of Canonical Forms for Lattice QuadratureRules," private communication.Niederreiter H. (1992), \Random Number Generation and Quasi-Monte Carlo Meth-ods ,"CBMS-NSF 63, SIAM, Philadelphia.Sloan I. H. (1992), \Numerical Integration in High Dimensions|The Lattice Rule Ap-proach," in Numerical Integration, T. O. Espelid and A. Genz (eds.), 55{69, KluwerAcademic Publishers, The Netherlands.Sloan I. H. and Lyness J. N. (1989), \The Representation of Lattice Quadrature Rulesas Multiple Sums," Math. Comput. 52, pp. 81{94.15
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